JUSEIPEN Workshop @ LBNL Sep. 09, 2009

DECAY GAMMA EXPERIMENTS

Shunji Nishimura RIKEN Nishina Center (RNC)

nishimu@riken.jp

Outline

- Status of RIBF
 - Facility
 - Location of Decay Experiment
- Status of Decay-Spectroscopy
 - Double-Sided-Silicon-Detector (DSSD)
 - Readout Electronics
 - Ge detectors (Clover)
 - Super-segmented beta-counting system
- Proposals and Future
 - Decay Spectroscopy Experiments at RIBF
 - Below A < 100
 - Beyond A > 100
- Summary

Status of RIBF Accelerator

Commissioning in Nov. 2008 ... successfull **RIBF Facility** In-beam gamma (Scheit) Coulomb breakup (Nakamura) Interaction cross-section (Ohtubo) New Isotope search (Kubo) ECR RILAC GARIS RRC SRC IRC **BigRIPS** ³⁸U ... 350 MeV/u fission production \rightarrow Very powerful for neutron rich nuclei Final Goal : beam int. = $1p\mu A$ for ^{238}U

Big-RIPS : large acceptance (50%)

Status and Plan at RIBF in 2009

http://www.nishina.riken.jp/UsersGuide/accelerator/tecinfo.html

Expected intensities of 345 MeV/nucleon beams at RIBF (pnA)

Kr	Xe	238 _U
30	-	♥0.3~0.5
30	10	5
	30	30 10

Machine time for FY2009 at RIBF under discussion.

- Oct. 17 23 ... Xe beam test
- Nov.12 Nov. 22 ... U beam test
- Nov. 23 Dec. o6 ... RIBF exp. using U beam (3-5 pnA)
- Dec. 07 Dec. 10 ... Ca be test
- Dec. 11 Dec. 20 ... RIBF exp. using Ca beam (200pnA)

Decay Experiments at RIBF

☆Double-Sided Silicon Strip Detector

- RI Beam (~ 200MeV/n)
 - Large momentum spread (~12%) from U fission
- Decay study of rare isotopes
 - High efficiency beta detector (E_{thr} < 50 keV)
- Cocktail beam
 - Simultaneous T_{1/2} reconstruction, particle by particle.

Decay Experiment H.Grawe, et al. Eur. Phys. J A 25 (2005) 357 + E(2+) map from Sakurai-san

Standard shell nuclei New closed shell nuclei ? gon Deformed shell quenched nuclei ? 9071 88 Sr P1/2 68Ni 15/2 P1/2 P3/2 20 d3/2 17/2 50 540 5/2 32 34 28 40 +N 14 16 20 Feedback to **Nuclear Theory** Inputs

Basic Information from Decay

Decay curve : $T_{1/2}$

■Excited states : E(2⁺), ..

■Isomeric states

■Q_β **Neutron emission** (\mathbf{P}_n)

Systematic Study

Nuclear Structure

- New magic number ?
- **Disappearance**?
- **Shell quenching?**
- **Deformation?**

Status of Experiment

DSSD & Ge-detectors (Clovers) 8 ~ 10 stacked Double-Sided-Silicon-Strip-Detectors

 Micron W1 (16 x 16 strips) 9 – 10 detectors
 Clover Ge detector 5 detectors

Cooling system

Performance of DSSD

 $\mathbf{E}_{\mathrm{threshold}}$

X-ray

test

50

~ 20 keV

100

477,1

73.40

150

- Good energy resolution
 - Particle identification
 - Efficient detection of beta-decay events
 - Event correlation of fragment implants and subsequent decays - 40 strips x 40 strips & 16 strips x 16 strips

- Full stopping of incident particles
- Beta-ray tracking
- Q_{beta} measurement
- Readout electronics
 Wide dynamic range readout system : 10 keV ~ 5 GeV

Shunji Nishimura @ RNC

χ³∕ndf 205.8 Constant Mean Sigma

4000

3500

3000

2500 2000

1500 1000

500

0

Ο

Dual-preamp readout system for wide-dynamic range energy measurement

Wide dynamic range

□ Incident RI (~ MeV ~ 4 GeV ~)

It would be essential for Decay Spectroscopy in massive nuclei above A > 100.

□ Beta-rays (10keV ~ MeV ~)

Gamma Detectors

- RIKEN has only 5 x clover detectors available..
 - Installation at close geometry to DSSD.
- Higher efficiency γ-ray detectors
 - \rightarrow Important for $\gamma \gamma$ analysis
 - 14 clover detectors ?
 - Super-Clover detectors ?
 - LaBr3(Ce) arrays ?
- Readout eletronics
 - ORTEC AD314 (CAMAC)
 - Iwatsu 3100A (VME)
 - TECHNO-AP with dead-time less readout

Picture : Clover detector surrounded by BGO detectors

TECHNO-AP + Time-stamp

- Coarse gain :x 1 ~ 100
- ADC

8ch

+/- 1V

- 14bit
- Performance
 - 1.75 KeV @ 1.33MeV
 - 100Kcps throuput

Super-segmented beta counting system : CAITEN

Cylindrical scintillator: (RP-408)

- 4x10⁵ pixel scintillators
- φ50 cm x 100 cm
- Ration : ~ 60 rpm ~
- Vertical motion (up / down)
- Air-coupling ~ 3mm gap
 - Position resolution
 σ~ 3.8 mm

Position Reconstruction

⁹⁰Sr source attached on the scintillator

Rotation speed 60 rpm (example)

- \Rightarrow Demonstration of position calibration.
- \Rightarrow Adequate position resolution ~ 3.8mm

Perspective Proposals and Future

Decay Spectroscopy Proposals

Neutron-rich nuclei

2009

Nov.

- Decay study for Co, Ni, Cu and Zn near N=50 shell closure (S.Nishimura)
- β-decay study of Rb, Sr, Y, Zr isotopes on r-process path (T.Sumikama)
- Search for long-lived isomeric states in neutron-rich Cd, Ag, and Pd (H.Watanabe)
- Decay Spectroscopy near ⁶⁴Cr (Z=24, N=40) (R.Clark)
- Super-segmented beta-detector "CAITEN" (S.Nishimura)

Proton-rich nuclei

- Decay Spectroscopy in the vicinity of ¹⁰⁰Sn (M.Lewitwicz)
- Search for two-proton radioactivity of ⁵⁹Ge, ⁶³Se, and ⁶⁷Kr (B.Blank)

More proposals ..

Vield Estimation around 78 Ni U-beam int. : ~ 1 pnA (5 pnA in 2009 !) Beam time : 2 days (N<50), 2 days (N=50), 3 days (N>50) Not discovered										
Known T _{1/2} Unknown T _{1/2}	N=50									
	⁷⁸ Zm	⁷⁹ Zn (10 ²)	⁸⁰ Zn (10 ³)	⁸¹ Zn (10 ⁴)	⁸² Zn (10 ³)	⁸³ Zn (10 ²)	Red No decay information			
	⁷⁷ Cu (10 ⁴)	⁷⁸ Cu (10 ⁴)	⁷⁹ Cu (10 ⁴)	⁸⁰ Cu (10 ³)	⁸¹ Cu (10 ²)	⁸² Cu (40)	⁸² Zn, ⁸³ Zn, ⁸⁰ Cu, ⁸¹ Cu, ⁸² Cu, ⁷⁹ Ni, ⁸⁰ Ni,			
Z=28	⁷⁶ Ni (10 ³)	⁷⁷ Ni (10 ³)	⁷⁸ Ni (10 ³)	⁷⁹ Ni (160)	⁸⁰ Ni (12)	^{SI} Ni	⁷⁵ Co, ⁷⁶ Co, ⁷⁷ Co, ⁷⁵ Fe			
	⁷⁵ Co (40)	⁷⁶ C0 (10 ²)	77 <mark>Co</mark> (60)	⁷⁸ C0 (6)	79Co	^{sa} Co	Excited states (depends on statistics) - E(2+)			
	⁷⁴ Fe (2)	⁷⁵ Fe (40)	⁷⁶ Fe (4)	77 Fe	⁷⁸ ⊮€		 Isomeric states (T_{1/2}, levels) Neutron Emission P_n 			

New beam line optics with two degrader modes \rightarrow may enables us to study more species of RI.

Short Half-lives of Nuclei beyond ⁷⁸Ni ??

★Higher production yield? ... 7^8 Ni ~ 1 / day (MSU) \rightarrow 10³ / day in 2009?

★Higher detection efficiency ? ... ~ $40\% \rightarrow 80\%$ ~?

more accurate measurement for ⁷⁸Ni at RIBF

Excited States E(2+) around N=50

O.Perru, et al. EPJA 28 (2006) 307.

J.V.Walle, PRL 99 (2007) 142501

What about ⁸²Zn and ⁷⁸Ni?

Benchmark to Nuclear Theory

Summary

- RIBF will provide an intense U beam
 - 0.01 pnA in 2007
 - 0.4 pnA in 2008
 - ~ 5 pnA in 2009
 - 1000 pnA in 20XX?
- Decay spectroscopy will provide important information for nuclear structure and astrophysics.
 - New isotopes, T1/2, isomer, E(2+), P_n, Q_β, …

Decay Experiments at RIKEN

Preparation of detector systems , DSSD & Ge & CAITEN

Plan for decay experiment

- 2009 ... ⁷⁸Ni (+ ¹¹⁰Zr)
- 2010 ~ ... ¹⁰⁰Sn, ⁶⁴Cr, ¹²⁸Cd, ⁵⁹Ge (⁶³Se, ⁶⁷Kr, ⁴⁸Ni), ...

In Future..

- Light nucleus near drip-line (..., F, Ne, Na, Mg, ...)
- ¹²⁸Pd , ⁹⁴Ag, ...